

CRYOBLOWA new wind in cryogenics

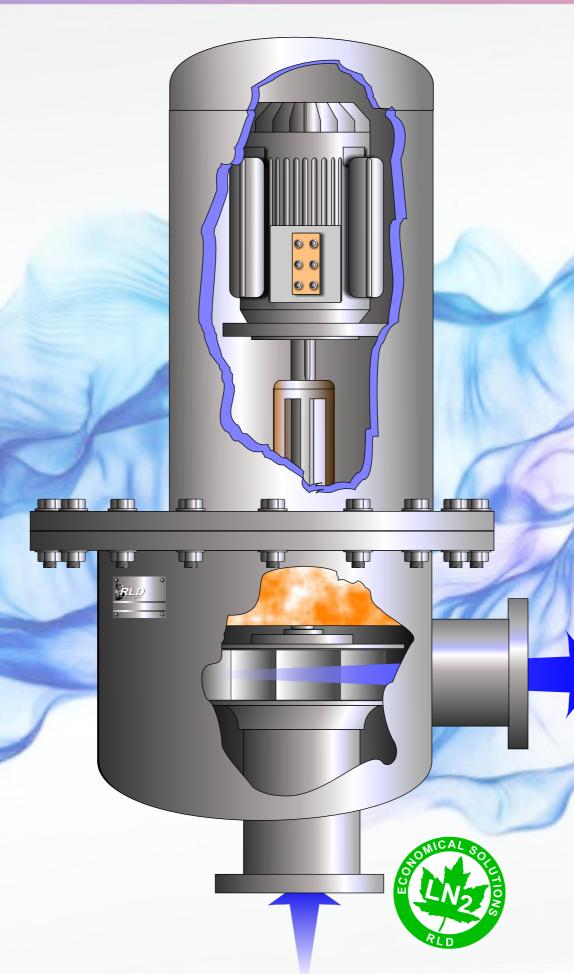
-195⁰C +300⁰C

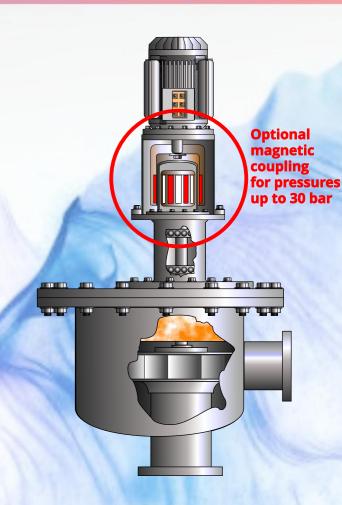
CRYOBLOW

The only economical cryogenic circulator on the market.

An important number of industrial applications require a confined and precisely controlled thermal environment. Numerous equipments, such as space simulation test facilities, cryopumps, cryostats and LNG test facilities, require to be cooled or heated. A reliable solution consist of the use of a forced flow of pressurized gas at controllable temperature, with powers ranging from 5 kW up to more than 100 kW combined with pressures up to 30 bars.

Such precisely controlled environments can be economically achieved using a forced flow of pressurized nitrogen or helium gas, circulated through an electrically heated/liquid nitrogen cooled heat exchanger.

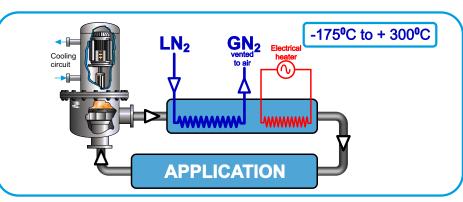

The CRYOBLOW is a frequency controlled versatile circulator capable of meeting a large range of specific customer requirements.

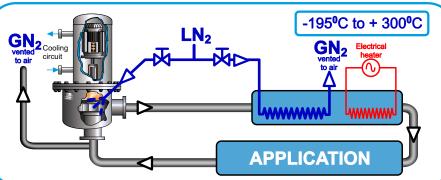

The drive system of the Cryoblow is designed to operate comfortably at ambient temperature allowing for years of maintenance free continuous operation. Thermally it is fully insulated from the gas circuit and hence does not inject any thermal energy.

Emphasis during its design was on maximum liquid nitrogen economy during operation. The unit has been designed by experts in the field of thermal engineering specifically for easy and reliable integration in existing or new processes.

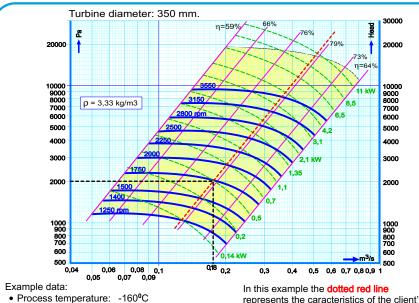
Inner magnets, non-magnetic bell and exterior magnets of a magnetic coupling set

All energy (mechanical or thermal) transmitted to the circuit gas must be compensated by an equal amount of refrigeration in order to maintain a stable cooling temperature.


Some figures for LN₂ as refrigerant:


Working	Power	LN ₂
Temperature	input	consumption
+100°C	1 kW	10 liters/hr.
0°C	1 kW	12,5 liters/hr.
-160°C	1 kW	22 liters/hr.

A large operational temperature range is possible:


- With a heat source (steam or electrical heater) up to +300°C.
- With a cold source (liquid nitrogen), the Cryoblow can descend to -195°C.
- A combination allows for operation from -195°C up to +300°C.

Each Cryoblow is individually designed and optimized for the customer's application. After factory testing it will function for years with impressive efficiency resulting in economical low LN₂ consumption and operational cost.

O Turbine (mm) @ 3600 r.p.m.	Head (meters) @ 3600 r.p.m.	Max. flow (m³/s) @ 3600 r.p.m.	Max. flow (m³/h) @ 3600 r.p.m.
250	130	0,5	1800
280	160	0,7	2500
310	200	0,9	3200
350	300	1,5	5400
400	350	2	7200
450	420	2,7	10000
500	550	3,5	12500

n this example the dotted red line
represents the caracteristics of the client's
circuit. The Cryoblow has an aeraulique
efficiency of 78% while consuming 500 watts.
The liquid nitrogen consumption of the
Cryoblow itself is only 11 liters per hour.

	EXISTING SOLUTION	Cryoblow
Power range	15 kW	5 - 100 kW
Head (m)	350 @ 6300 rpm	550 @ 3600 rpm
Efficiency	Not communicated	up to 80%
T _{in min}	-188 ^o C	-195°C
T _{in max}	+150°C	+300°C
Flow rates	350 m ³ /h	up to 12500 m ³ /h
R.P.M.	up to 6300	500 - 3600
Turbine	not insulated*	insulated
ATEX	optional	optional
Construction	Stainless steel	Stainless steel
Maintenance	each 2500 hrs.	each 30000 hrs.

* direct thermal exchange between GN2 and the ethylene glycol transfer fluid at room temperature

The green sign for Economical Solutions for equipment using LN_2 indicates products developed by

3,33 kg/m3

1750 r.p.m.

2000 Pa

0,18 m³/sec (648 m³/h)

RLD Thermique - Ingénierie from Grenoble France.

Grenoble is known worldwide for high technology and innovative solutions. In addition to the local high manufacturing quality of industrial and scientific products RLD Thermique - Ingénierie has made it their trademark to optimize their designs for low LN₂ consumption combining efficiency, reliability, low maintenance and longevity. Over 40 years experience in designing and manufacturing key elements for major international projects guarantees high quality units optimized for their intended tasks.

· GN2 density:

• Pressure loss:

• Turbine speed:

• Flowrate:

For additional information:

RLD Thermique - Ingénierie 4, Rue Augereau - 38000 Grenoble Tel.: 0033 (0)6 73 74 38 79 contact@thermique-ingenierie.fr www.thermique-ingenierie.fr

